Seat No:

Enrollment No: C.U.SHAH UNIVERSITY

WADHWAN CITY

University (Winter) Examination -2013

Name :M.Sc(Mathematics) Sem-I Subject Name: -Complex Analysis -I Marks:70 **Duration :- 3:00 Hours** Date : 20/12/2013 Instructions:-(1) Attempt all Questions of both sections in same answer book / Supplementary. (2) Use of Programmable calculator & any other electronic instrument is prohibited. (3) Instructions written on main answer Book are strictly to be obeyed. (4) Draw neat diagrams & figures (If necessary) at right places. (5) Assume suitable & Perfect data if needed. **SECTION-I** a) Find the value of i^{100} . Q-1 (01)b) Find imaginary value of $z = \frac{5}{(1-i)(1+i)}$. (01)c) $w = \log z$ is analytic everywhere except at z =____. (01)d) Evaluate: $\int_{i}^{1} (z+1)^2 dz$. (01)e) Evaluate: $\int_C \frac{1}{z^3} dz$, C: |z| = 1. (01)f) Let C be a circle |z - 1| = 3 in the complex plane, then find $\int_C \frac{\cos z}{z - \pi} dz$. (01)g) $\oint_C \frac{z+1}{z^2} dz = 2\pi i$, Where C is a path enclosing the origin. Determine whether (01)the statement is true or false.

- a) Suppose a function f(z) = u(x, y) + iv(x, y) is defined in the neighborhood **O-2** (05)of a point $z_0 = x_0 + iy_0$. Then prove that f is differentiable at z_0 if
 - i) C-R equations are true at z_0 and
 - ii) First order partial derivatives u_x , u_y , v_x and v_y are continuous at z_0 .
 - b) Find out the complex number $\left(\frac{1+\sin \alpha + i \cos \alpha}{1+\sin \alpha i \cos \alpha}\right)^n$. (05)
 - c) Show that if C is any n^{th} root of unity other than unity itself, then prove that (04) $1 + C + C^2 + \dots + C^{n-1} = 0.$

OR

- a) Define: Conjugate of complex number. Show that $z^2 = \overline{z}^2$ if and only if z Q-2 (05)either real or purely imaginary.
 - b) Write polar form of C-R equation. Using it $f(z) = z^{\frac{5}{2}}$ is analytic or not. (05)
 - c) Is $Arg(z_1z_2) = Arg(z_1) + Arg(z_2)$? Justify. (04)
- Q-3 a) Prove that f(z) = u + iv is analytic on a domain D if and only if v is a (05)harmonic conjugate of *u* on *D*.
 - b) Let f(z) be analytic on a domain D with fact that f'(z) = 0 for all z in the (05)domain D. Then prove that f reduces to a constant on D.

c) Show that
$$\frac{\lim_{z \to 2i} (2x + iy^2) = 4i}{2} = 4i.$$
 (04)

OR

Q-3 a) Find out the analytic function having the real part is $u(x, y) = y + e^x \cos y$. (05)

- b) If f(z) is analytic within and on a simple close curve *C* and z_0 is any point (05) interior to *C*, then prove that $\oint_C \frac{f(z)}{z-z_0} dz = 2\pi i f(z_0)$ the integration being taken counterclockwise.
- c) State and prove ML- inequality.

Q-6

(04)

(01)

SECTION-II

Q-4 a) Find Laurent series of
$$f(z) = z^2 e^{\frac{1}{z}}$$
 about the indicated point $z_0 = 0$. (02)
b) Find pole of $f(z) = -\frac{1}{z}$ (01)

b) Find pole of
$$f(z) = \frac{1}{(z+i)}$$
. (01)

- c) Using residue theorem, show that $\oint_C \frac{e^{-z}}{z^2} dz = -2\pi i$, *C* is the circle about the (01) origin.
- d) State maximum modulus principle. (01)
- e) Determine orders of zeros of $f(z) = z \sin\left(\frac{1}{z}\right)$. (01)
- f) State Rouche's Theorem.
- Q-5 a) State Laurent Expansion Theorem. Find the Laurent expansion of (05) $f(z) = \frac{1}{z^2 z}$ near z = 0.
 - b) Define: Bilinear Transformation. Find the bilinear transformation that maps (05) the points $z = 0, 1, \infty$ in to the points $w^{\pm 1/+5}, -1, 3$ respectively.
 - c) Find radii of convergence of power series i) $\sum_{n=0}^{\infty} \frac{n!}{n^n} z^n$, ii) $\sum_{n=1}^{\infty} \frac{1}{n^p} z^n$. (04)
- Q-5 a) Let C_1 be a positively oriented simple close contour and C_2 be another simple (05) closed contour which is negatively oriented and lying in C_1 . Suppose f is analytic on the closed region bounded by C_1 and C_2 , then prove that $\int_{C_1} f(z) dz + \int_{C_2} f(z) dz = 0.$
 - b) Write Maclaurin's Series. Find the Maclaurin series representation of $f(z) = \sin z$ in the region $|z| < \infty$. (05)
 - c) Find the fixed points of the transformation $w = \frac{-2 + (2+i)z}{i+z}$. (04)
- Q-6 a) Let C be a simple closed contour, described in the positive sense. If a (05) function f(z) is analytic inside and on C except for a finite number of singular points(poles or isolated singularities) $z_1, z_2, ..., z_n$ inside C, then prove that $\oint_C f(z) dz = 2\pi i \sum_{k=1}^n \frac{Res}{z = z_0} f(z)$.
 - b) Define residue at simple pole and find the sum of residues of the function (05) $f(z) = \frac{\sin z}{z \cos z}$ at its poles inside the circle |z| = 2.
 - c) Expand $f(z) = \frac{1-e^z}{z}$ in Laurent's series about z = 0 and identify the ⁽⁰⁴⁾ singularity.

a) Evaluate :
$$\int_0^{2\pi} \frac{4 \, d\theta}{5+4 \sin \theta}.$$
 (05)

- b) Define Residue at multipole. Determine the poles of the function (05) $f(z) = \frac{z^2}{(z-1)^2(z+2)}$ and find the residue at each pole.
- c) Define Isolated, Essential and Removable singularities with examples. (04)